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Abstract12

Due to the mixing of groundwaters with different ages in aquifers, groundwater age is more 13

appropriately represented by a distribution rather than a scalar number. To infer a groundwater 14

age distribution from environmental tracers, a mathematical form is often assumed for the 15

shape of the distribution and the parameters of the mathematical distribution are estimated 16

using deterministic or stochastic inverse methods. The prescription of the mathematical form 17

limits the exploration of the age distribution to the shapes that can be described by the selected 18

distribution. In this paper, the use of freeform histograms as groundwater age distributions is 19

evaluated. A Bayesian Markov Chain Monte Carlo approach is used to estimate the fraction of 20

groundwater in each histogram bin. The method was able to capture the shape of a hypothetical 21

gamma distribution from the concentrations of four age tracers. The number of bins that can be 22

considered in this approach is limited based on the number of tracers available. The histogram 23
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method was also tested on groundwater age data sets from Holten (The Netherlands) and the 24

La Selva Biological Station in Costa-Rica, and compared to a number of mathematical forms.25

According to standard Bayesian measures of model goodness, the best mathematical 26

distribution performs better than the histogram distributions in terms of the ability to capture 27

the observed tracer data relative to their complexity. Among the histogram distributions, the 28

four bin histogram performs better in most of the cases. The Monte Carlo simulations showed 29

strong correlations in the posterior estimates of bin contributions, indicating that these bins 30

cannot be well constrained using the available age tracers. The fact that mathematical forms 31

overall perform better than the freeform histogram does not undermine the benefit of the 32

freeform approach, especially for the cases where a larger amount of observed data is available 33

and when the real groundwater distribution is more complex than can be represented by simple 34

mathematical forms.35

36

Keywords: Groundwater dating, Bayesian Inference, Shape Free Histogram, Environmental 37

Tracers.38

39

1. Introduction40

The subsurface travel time of groundwater – here also referred to as groundwater age – is 41

important information for assessing the vulnerability of wells to contamination (Bethke and 42

Johnson, 2008; Broers and G., 2005; Glynn and Plummer, 2005; Kralik and Keimel, 2003; 43

Manning et al., 2005), evaluating the history and fate of contaminants (Bohlke and Denver, 1995; 44

Hinsby et al., 2001) and demonstrating the effectiveness and timescales of groundwater quality45

management strategies (Hansen et al., 2010; Laier, 2004; Visser et al., 2007; Wassenaar et al., 46

2006; Zoellmann et al., 2001). The age of pumped groundwater also reflects the sustainability of 47

groundwater resources under climate change (Singleton and Moran, 2010).48
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Initial conceptual models for "groundwater age" assumed a uniform age of groundwater at a 49

specific location in the aquifer (i.e. piston flow model). Recent work demonstrated that even at 50

the smallest scale (e.g. ~200m), due to the diffusive and dispersive mixing of ages in the aquifer51

(Engesgaard et al., 1996; Gelhar et al., 1992; Weissmann et al., 2002), the age of a groundwater 52

parcel is a distribution (Bethke and Johnson, 2008; Massoudieh et al., 2012). The degree of 53

mixing is still heavily debated (Castro et al., 1998; Cirpka and Attinger, 2003; Solomon et al., 54

1992; Weissmann et al., 2002), as are the underlying processes and consequent shapes of the 55

probability density function (Engdahl et al., 2012; Engdahl et al., 2013; Weissmann et al., 2002). 56

Production wells and springs undoubtedly collect groundwater with a wide age distribution57

(Manning et al., 2005).58

Unfortunately, age is not a quantity that can be measured directly (Massoudieh and Ginn, 2011). 59

Therefore, it needs to be derived from analytical or numerical modeling of groundwater fluxes 60

(Goode, 1996; Troldborg et al., 2008; Visser et al., 2009; Woolfenden and Ginn, 2009) or by 61

converting measured concentrations of a number of tracers to a groundwater age distribution62

(Corcho Alvarado et al., 2007; Lehmann et al., 2003; Plummer et al., 2001; Solomon et al., 2010; 63

Sültenfuβ et al., 2011; Visser et al., 2013). At the time-scale relevant for well vulnerability and 64

response (years to decades), a number of age tracers (e.g. 85Krypton (Smethie et al., 1992), 65

tritium-helium (Poreda et al., 1988; Schlosser et al., 1988), chlorofluorocarbons (Busenberg and 66

Plummer, 1992), sulfur-hexafluoride (Busenberg and Plummer, 2000), and 39Argon (Loosli, 1983; 67

Loosli et al., 1989; Oeschger et al., 1974)) are suitable. 68

Since a single sample of a single age tracer is incapable of identifying the entire age distribution, 69

it needs to be inferred from a combination of age tracers or a time series of age tracers 70

(Maloszewski and Zuber, 1982; Morgenstern et al., 2010) or other parameters such as electrical 71

conductivity (Cirpka and Attinger, 2003; Molina-Giraldo et al., 2010). The age distribution is 72

often deconvoluted using mathematical models prescribing its shape (Maloszewski and Zuber, 73

1993; Maloszewski and Zuber, 1998). For instances where such models are too restrictive due to 74

the complexity of true age distribution or the heterogeneity of the aquifer, a shape-free age 75
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histogram approach was developed (Liao and Cirpka, 2011; Massoudieh and Ginn, 2011; Visser 76

et al., 2013).77

Deconvolution is often deterministically performed, using oversimplifying assumptions 78

(Rinaldo et al., 2011) providing a single age distribution. Several studies have included 79

parameter uncertainty (Cirpka et al., 2007; Corcho Alvarado et al., 2007; Sültenfuβ et al., 2011)80

or applied a multitude of age models to estimate the uncertainty of the age distribution81

(Solomon et al., 2010; Visser et al., 2013). The starting point for improving theories and datasets 82

is a formal framework of hypothesis testing (Beven, 2010). Including an explicit recognition of 83

input uncertainty yields probability density functions of the age model parameters and 84

consequently age distributions. Larocque et al., (2009) presented the first systematic and 85

integrated assessment of bias and uncertainty associated with the estimation of groundwater 86

flow rates using tracers and pumping tests in heterogeneous aquifer systems. 87

Bayesian inference techniques are more commonly applied in catchment hydrology (Vrugt et 88

al., 2008) and unsaturated zone hydrology (Vrugt et al., 2001). Recent studies investigated the 89

propagated uncertainties in excess air models (Jung et al., 2012; Sun et al., 2010) and used 90

Bayesian methods for contaminant source identification (Fox and Papanicolaou, 2008; 91

Massoudieh and Kayhanian, 2013; Zeng et al., 2012). So far, only a single study has applied 92

Bayesian methods to derive age distribution from groundwater age tracers (Massoudieh et al., 93

2012). This work will extend that study by applying Bayesian inference to a shape free age 94

histogram model. The goal of this study is to evaluate the possibility of using measured 95

concentrations of multiple environmental tracers to infer the groundwater age distribution 96

when the form of the groundwater distribution is not assumed a priori but rather is considered 97

to be a histogram with a given bin size but unknown values in each bin. The approach is tested 98

on three increasingly complex cases: a synthetic example, a multi age tracer data set from a 99

production well field in a simple hydrological setting (Visser et al., 2013) and a dataset 100

involving degrading tracers in a complex hydrogeologic system (Solomon et al., 2010). In this 101

study, we investigated the uncertainty of a histogram age distribution estimated from multiple 102

age tracers, at different levels of complexity. The histogram age distribution provides a more 103



5

free-form presumed age distribution compared to the traditionally used lumped parameter 104

models were the presumed form of the distribution is highly restricted to a prescribed 105

mathematical form.106

2. Methods107

2.1 Tracers108

Figure 1 shows the expected concentrations (decay-corrected to 2010 if necessary) of common 109

groundwater age tracers in groundwater under piston-flow conditions, on a logarithmic time-110

scale. Tracer concentrations are averaged over exponentially increasing age bins, and then 111

scaled to the maximum concentration. The logarithmic time scale reflects the exponentially 112

increasing desire for higher resolution when dating younger groundwater. Three patterns 113

emerge from this figure: Type 1: gradually decreasing concentrations with age, resulting from 114

radioactive decay (39Ar, 14C) or increasing anthropogenic releases into the modern atmosphere 115

(SF6, CFCs) or both (85Kr). Type 2: increasing concentrations with age (radiogenic 4He) and Type 116

3: a pulse due to nuclear testing and subsequent decreasing concentrations in younger 117

groundwater (3H, tritiogenic 3He, 14C). 118

A combination of Type 1 tracers is ideal for deconvoluting the age distribution using 119

mathematical models, granted that the different tracers exhibit distinctly different histories 120

(Kass and Raftery, 1995). Four distinct Type 1 curves are visible: (1) 85Kr and SF6, (2) CFCs, (3) 121

39Ar and (4) 14C, with “half-lives” of 10.7 years for 85Kr and SF6, 25-34 years for CFCs, 269 years 122

for 39Ar and 5730 years for 14C. (“Half-life” referring to the time that half of the maximum 123

concentration is observed.) 124

The linear increasing concentrations of radiogenic helium (Type 2) observed in ideal cases often 125

require calibration against a different age tracer (e.g. Plummer et al., 2012) and provide a 126

distinctly different perspective. The linear ingrowth of radiogenic 4He results in an increasing 127

sensitivity to the oldest groundwater component in the mixture. 128
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The pulsed input caused by nuclear testing (Type 3) is most pronounced in 3H and 3He. These 129

tracers are specifically sensitive to that particular period. The combination of 3H and 3He 130

benefits deconvolution if only a small portion of groundwater dates back to the nuclear test 131

period because of the overwhelming initial tritium concentrations. The impact of nuclear testing 132

on 14C is more prolonged due to its longer half-life and the longer lifetime of CO2 in the 133

atmosphere, yet less important because of the distance from the age window that is typically134

dated with 14C. 135

The example datasets we analyze contain two combinations of tracers: 85Kr, 3H, 3He and 39Ar in 136

Holten, and SF6, CFCs, 3H, 4He and 14C in La Selva. 137

2.2 The relationship between tracer concentration and groundwater age 138

distribution139

Similar to the work by Massoudieh et al. (Massoudieh et al., 2012) assuming that the 140

contribution from mineral dissolution is devoid of tracers and that the adsorbed tracers 141

undergo the same rate of decay as the mobile tracers, the general form of the equation for tracer 142

concentration of decaying and linearly accumulating tracers respectively can be written based 143

on  Maloszewski and Zuber (1982) as:144

   , ,

0

, , ' ( , , ) (1 )i i m i o i old ic t f f c t R e t d f c    


    x x (1a)145

   , ,

0

, , ( , , ) (1 )i i i i o old ic t f t d c t f c    


    x x (1b)146

where  , ,i ic tx is the measured tracer concentration (or isotope’s concentration normalized by 147

the concentration of the stable isotope) of tracer i at location x and time t , ( , , )t x is the 148

groundwater age distribution,  ,i oc t  is the concentration (or the isotope ratio) in the 149

recharge water at time t  . In Eq. (1a), i is the decay rate of tracer i for decaying tracers and 150

in Eq. (1b), it is the accumulation rate of isotope i in case of linearly accumulating isotope 151
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tracers. iR is the retardation factor for tracer i, mf is the fraction of carbon with atmospheric 152

source as opposed to mineral dissolution source (only applicable to 14C), f is the fraction of 153

young groundwater and ,old ic is the tracer concentration in the old fraction of groundwater 154

which is assumed to be fixed.155

2.3 Bayesian Inference 156

The purpose of the Bayesian inference is to obtain the possibility space of freeform age 157

distribution given the tracer data. This is done by generating the joint probability distribution of 158

the model parameters including the parameters in Eq. (1a and b) and the fraction of 159

groundwater in each bin of the histogram representing the age distribution. The inferred 160

probability distribution of model parameters and values in each bin based on the observed 161

tracer concentrations are referred to as the posterior distribution of the model parameter. To 162

quantify a groundwater age distribution from available age tracer data, a shape-free discrete 163

groundwater age distribution model was applied. The model describes the groundwater age 164

distribution by a number of age bins with a uniform age distribution within each bin. Because 165

most groundwater age tracers (3H, tritiogenic 3He, 85Kr, SF6, CFCs) relate to the period since 166

1950, one bin represents groundwater that recharged prior to 1950. The remaining bins cover 167

the period from present to 1950. For five bins, the first four bins each span 15 years with breaks 168

at 2010, 1995, 1980, 1965 and 1950. The groundwater age distribution of the old groundwater bin 169

cannot be further refined, unless multiple old groundwater tracers (39Ar, 14C, radiogenic 4He) are 170

available. Ideally, the age distribution of the old groundwater fraction is homogeneous within 171

the aquifer and has a distinct tracer signature. A discrete groundwater age distribution model 172

with n bins is defined by n-1 parameters. The number of bins is ideally smaller or equal to the 173

number of tracer measurements, to ensure that the problem is not under defined. The goal here 174

is to estimate the contribution of groundwater with age a falling within bin i of the histogram:175

1

1

( 1) , 1 1

( , , )
1 ( 1)

i

n
m

i
i

for i h a i h i n

X t a
h for a n h










      


 
    






(2)176



8

where 1 2, ,... n   are the fraction of groundwater in each bin normalized by size of the bins. . 177

The goal of Bayesian Inference is to infer the probability density functions of the parameters (i.e. 178

 1 2, ,... n  Φ ) and also the fraction of tracers with atmospheric sources, mf , and the fraction 179

of young groundwater f while considering the uncertainties in decay rates, i and also the 180

observed concentrations. If we consider vector 1 2[ , , ]mc c cC  to represent the random vector 181

comprising the true concentrations (or isotope ratios) of all chemicals, and vector 182

1 2
ˆ ˆ ˆ ˆ[ , , ]mc c cC  to be the observed concentrations, and assuming that the observation errors for 183

tracer concentrations are log-normally distributed and multiplicative with an equal standard 184

deviation  for all the tracers, the Bayes theorem can be written as (Massoudieh et al., 2012):185

           
2

2 22
2

2 222 2
,11

1 2

ln lnˆln ln ˆ( )

22 2

ˆ( , , , , ,..., , , | )

1
( ,0,1) ( ,0,1)

mm i cb b cm mii i c c

cb cmiii c
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p f f c c C

e e U f U f e e





   

  

  




               
  



 
  

     
 

 

Φ

(3)186

where m is the number of tracers, cc and ˆ
cc are the true and observed concentrations of any non-187

decaying signature tracer that is used to determine the source of dominant isotopes of the 188

tracers (e.g. 13C) and is considered to have a Gaussian and additive error structure with a fixed 189

standard deviation of c . i is the decay rate of tracer i, i and i are, respectively, the mean 190

and standard deviation of prior distributions of decay rates for tracer i.  cb and cm are the 191

means of the prior normal distribution of non-decaying tracer concentrations with biogenic and 192

mineral sources, respectively. U(x,0,1) represent uniform distribution between 0 and 1. cb and193

cm are the standard deviations of the prior normal distribution of non-decaying tracer 194

concentrations with biogenic and mineral sources, respectively, bc and mc are the concentrations 195

of signature tracers with biogenic and mineral sources, respectively. For example when 14C is 196

used for dating groundwater it is important to know what fraction of total inorganic carbon in 197

the aqueous phase is contributed through mineral dissolution and 13C isotope ratio contain 198

information that can be used for this purpose.  In a case where the tracer observed error 199
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structure is normally distributed and the observed standard deviation is not the same for all the 200

tracers, the likelihood function (the first term on the right hand-side of Eq. (3)) should be 201

replaced by a joint normal distribution using a variance-covariance matrix instead of a single 202

variance. The assumption about the error structure used in the likelihood function can 203

potentially have a significant effect on the inferred age distribution due to the fact that it 204

determines how much weight to be given to each of the tracers. 205

Markov-Chain Monte Carlo206

In order to find the expected values, i.e. confidence intervals of the posterior joint probability 207

density function (PDF), and to evaluate the correlations between the inferred parameters, Eq. 3 208

has to be integrated over the parameter space. It is clear that since the number of dimensions of 209

the parameter space is large, integration of Eq. 3 is prohibitive. Markov-Chain Monte Carlo 210

(MCMC) methods are relatively simple methods to generate a large number of samples of 211

parameters, based on the posterior distribution (Gamerman and Hedibert, 2006; Kaipio and 212

Somersale, 2004). Algorithms such as Metropolis-Hasting or Gibbs Sampling provide a way to 213

generate samples according to a large-dimensional posterior joint probability density function 214

(JPDF). Here we use the Metropolis-Hasting Algorithm (Metropolis et al., 1953). A C++ code is 215

written to perform the MCMC simulation. The number of Markov Chains can be determined by 216

the user. In the example application presented in the next section, 500,000 samples resulted in 217

convergence of the MCMC method. The first 100,000 samples were left out as “burn-in” period. 218

In order to reduce the burn-in period, a hybrid genetic algorithm (Massoudieh et al., 2008) was 219

used prior to the MCMC sample generation to find the neighborhood of the optimal parameters 220

and the MCMC is initialized from the optimal parameter set. 221

The effectiveness of the free form age distribution with varying number of bins as well as 222

mathematical forms was assessed by the Deviance Information Criteria (DIC) and Bayes Factors 223

(BF). 224
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Deviance Information Criteria (DIC)225

DIC (Spiegelhalter et al., 2002) is a measure that is used to compare the goodness of different 226

model structures applied to the same data. It takes into account how well a model structure can 227

reproduce the observed data while explicitly considering the complexity level of the model:228

   2DIC D D   

(5)
229

where  D  is the mean deviance and  D  is the deviance of the mean, respectively defined 230

as:231

  ˆ ˆ2 ln ( | ) 2 ln ( )D E p f      C C (6)232

  ˆ ˆln ( | ) 2 ln ( )D p f    C C
(7)

233

where f is a standardizing term that is only a function of the observed data,  represents the 234

parameters that are random-vector distributed based on the posterior distribution, and  is the 235

expected values of the posterior distribution of parameters. Because ˆ2ln ( )f C is only a function 236

of the observed data, it is not affected by the model structure, and therefore, becomes irrelevant 237

when comparing two models. The DIC can be easily calculated using the results of the MCMC 238

calculations. A lower DIC value indicates that the modeled tracers deviate less from the 239

measured tracers given the model complexity and that the model performs better.240

Bayes Factor (BF)241

To compare different age distribution forms in terms of their ability to reproduce the measured 242

data, the Bayes factor method (Jeffreys, 1935; Kass and Raftery, 1995) was used. The Bayes 243

factor for comparing two models M1 and M2 assuming an equal prior probability for the models 244

is defined as: 245
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C

(8)246

12B represents the ratio of the chance that model 1 is the true model to the chance that model 2 247

is the true model, ˆ( | , )p C M is the likelihood of observing concentrations Ĉ given model M, 248

and ( )p  is the prior density of the parameters. Since we are comparing multiple models here,249

only the numerator of Eq. (8) is calculated for each model as: 250

ˆ( | , ) ( )
s

k s k sI p M p  
X

C

(9)251

The integrals of posterior distribution are estimated using the Monte Carlo method (Carlin and 252

Chib, 1995):253

( ) ( )1ˆ ˆ( | , ) ( ) ( | , ) ( )
s

k k
s s s s s sp C M p p C M p

n


    X

(10)254

255

In this paper, the Bayes Factor is expressed as the logarithm of I, whereby a high Log(I) indicates 256

that the model performs better and therefore represents a high chance/probability that the 257

model is correct. Bayes factor can be viewed as measuring the relative success of a model at 258

predicting the data while implicitly considering the model complexity in evaluating the 259

evidence in support of a model (Horneman et al., 2008). 260

2.4 Experiments and study areas261

2.4.1 Synthetic case262

To first evaluate the ability of the method to infer histograms that are close to the true age 263

distribution from groundwater age tracer data, a hypothetical case of a known age distribution 264

is used. The hypothetical age distribution is a gamma distribution,265
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1 1 /( ; , ) ( ) k k xgamma x k k x e       , with a shape parameter  of 4 and a scale parameter  of 266

5.  This gamma age distribution is used to calculate the average concentration of four tracers 267

(3H, 3He, 85Kr and 39Ar) for the mixture, convoluting the tracer inputs of Figure 1 with the 268

gamma age distribution. Next, the Bayesian inference scheme is applied to reconstruct the age 269

distribution using 3, 4 and 10 bin histograms based on the calculated tracer concentrations. The 270

ability of the Bayesian inference scheme to estimate the histogram contributions is evaluated by 271

measures of spread and bias of the estimated age distribution with respect to the true values:272

  2

0

( ) ( )E a a da  


   (12)273

  
2

0

( ) ( )b E a a da 


   (13)274

where is a measure of spread of the estimated age distributions ( )a around the true age 275

distribution ( )a which can be interpreted as a measure of uncertainty, and b is a measure of 276

bias representing how much the expected value of age distribution deviates from the true age 277

distribution. 278

2.4.2 Holten279

The production well field is located near Holten, in the eastern part of the Netherlands. A 280

phreatic groundwater system is present in the (partly ice-pushed) fluvial and periglacial 281

deposits of 90 to 120 m thickness. The Holten well field produces 2.5 million cubic meters 282

groundwater using 19 wells within 1 km2 from a depth of 10 to 70 meters below the surface. The 283

well field is vulnerable to contamination because of the agricultural land use and residential 284

areas in the capture area, the sandy aquifer, expected short groundwater residence times and 285

relatively shallow groundwater levels (4-8 m below surface). Most wells were constructed 286

between 1960 and 1973 and are screened fairly shallow, between 15 and 30 m below the surface. 287

In 1985, the three deep wells were drilled and screened from 45 to 70 m below the surface. The 288

differences in screen depths were expected to result in distinctly different groundwater age 289
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distributions (Visser et al. 2013). Samples for 85Kr, 3H/3He, and 39Ar analysis were collected on 20 290

and 21 April 2010 from seven wells (four shallow, three deep), capturing 69% of the total 291

drinking water production.292

For the Holten study area, the concentrations of 3H in historical precipitation were 293

reconstructed based on five nearby stations and the Vienna station of the Global Network of 294

Isotopes in Precipitation (GNIP, IAEA/WMO, 2010). The time series of the 85Kr activity in the 295

atmosphere collected and measured at Freiburg im Breisgau (Institute of Atmospheric Research 296

(IAR), Freiburg, Germany) was used for Holten without correction, which is likely a lower 297

estimate because of closer the proximity to the reprocessing facilities Sellafield and La Hague 298

compared to Freiburg. 299

All of the wells contain 3H and 85Kr, indicating a fraction of modern groundwater is present in 300

the mixture sampled by each well. Tritiogenic 3He concentrations range from 6.4 TU in one of 301

the deep wells to 27 TU in one of the shallow wells. The 39Ar activities in the shallow production 302

wells are all over 90 (±10) percent of the modern atmospheric activities (% modern), while the 303

39Ar activities of the three deep production wells range from 77 to 51 (±8) % modern. The deep 304

production well samples also contain a radiogenic helium-4 component of 10-24% of 305

atmospheric equilibrium helium concentrations. Table (1) provides a summary of measured 306

tracer concentrations in the sample wells.307

2.4.3 La Selva308

La Selva Biological Station is located on the Caribbean coastal plain at the foot of Volcan Barva.  309

Annual precipitation ranges from 4240 mm at the study site, to more than 8000 mm at an 310

elevation of 700 m (Solomon et al., 2010). There is strong evidence that groundwater flow at this 311

site consists of two distinct end-members: (1) high solute bedrock groundwater representing 312

inter-basin groundwater flow and (2) low-solute groundwater derived from recharge that falls 313

within the drainage area of the Sura and Salto streams. The main source of dissolved inorganic 314

carbon is magmatic outgassing. Dissolution of carbonate minerals does not have a significant 315

contribution in Dissolved Inorganic Carbon (DIC) (Genereux et al., 2009). The site characteristics 316
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and sampling procedures have been extensively described in (Genereux et al., 2009; Solomon et 317

al., 2010; Webb, 2007). The following tracers were used: 14C, CFC-11, CFC-12, CFC-113, 3H, SF6,318

and 4He. Among these tracers,4He is the only one that accumulates in the groundwater as a 319

result of decay of radionuclides 238U, 232Th, and 235U. The historical concentrations of tracers 320

entering the groundwater system have been described in detail before (Solomon et al., 2010). 321

The parameters and tracer concentrations used in the Bayesian modeling are summarized in322

Table (2). The analysis was performed on samples collected from four wells identified by 323

numbers 7, 11, 16 and 30. The observed concentrations of the tracers at the four sampling 324

locations are listed in Table (2). Different mathematical forms of age distribution has been 325

examined on exactly the same data previously (Massoudieh et al., 2012).326

3. Results327

3.1 Synthetic case328

Figure 3 shows the hypothetical gamma distribution and the inferred 3, 4 and 10 bin 329

histograms. Calculated concentrations of 39Ar, 85Kr, 3H and tritiogenic 3He based on the 330

presumed gamma distribution were used to infer the freeform age distribution. In principle, the 331

histogram method is capable of reproducing the mathematical shape of the age distribution. 332

When 4 and 10 bin histograms are used, the inferred histograms fit the younger parts of the age 333

distribution (i.e. more recent years) better than the older parts. The 3 bin histogram does not 334

have the flexibility to represent the early part of the synthetic histogram as well due to the fact 335

that the distribution between 0 and 20 years old water is considered uniform. It should be noted 336

that even though considering a 10-bin histogram results in an over parameterized problem with 337

respect to the values of each bin, due to the constraints between the bin values as a result of 338

applying the tracer data the cumulative distribution is constrained and follow the shape of the 339

true age distribution. It is interesting (although not unexpected) that although in the 10-bin 340

model each bin value can vary within a large range the negative correlation between the 341

adjacent bins is such that their summation does not vary as much. Table (3) shows the measures 342

of model goodness of fit Log(I) and DIC as well as  and b that show how much the inferred 343
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distributions deviate from the true gamma distributions when 3, 4 and 10 bin histograms are 344

applied to the hypothetical gamma distribution. Log (I) is a measure that indicates how good the 345

age distribution represented as a histogram can reproduce the tracer concentrations, so as it is 346

expected, the larger the number of bins results in a higher flexibility of the model in terms of the 347

age distributions it can reproduce which in turns results in a higher the value of Log(I). 348

However, the relative improvement in the Log(I) as a result of an increase from four bins to 10 349

bins is smaller than the relative improvement as a result of an increase in the number of bins 350

from 3 to 4. On the other hand DIC is a measure of goodness of models that explicitly accounts351

for the model complexity. The three bin model has the lowest DIC which means it is the best 352

model. This implies that accounting for the model complexity, a three bin histogram is sufficient 353

for describing the four tracer data obtained based on a gamma age distribution. This result may 354

change if a larger number of tracers are used. 355

 and b measure the ability of the model to capture the known true age distribution in terms of 356

spread and bias. It appears that the four bin histogram results in a smaller spread as well as a 357

smaller bias. This means that although the 10 bin histogram results in a better fitting of the 358

tracer concentrations (as measured according to the Bayes factor), Log (I) it is less capable to 359

reproduce the true age distribution which is an indication of the model being over-360

parameterized. 361

362

3.4.2 Holten363

The Bayesian Inference model was used to infer the parameters of seven presumed distribution364

types: 3, 4 and 10 bin histograms, and exponential, gamma, log-normal and inverse Gaussian365

distributions. The inverse Gaussian distribution is equivalent to advection dispersion in a one-366

dimensional system. For all the cases an old fraction is also considered to be present with zero367

85Kr, 3H and tritiogenic 3He, while the concentration of 39Ar in the old fraction is assumed to be 368

45 percent modern. 369
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Figure 4 shows the inferred cumulative age distributions for three of the wells in the Holten site. 370

The wells selected for presentation in this figure cover a wide range of old groundwater 371

fractions. Well 59-05 has a young fraction of 60%-90%, well 72-22 has a young fraction of more 372

than 90% and well 85-35 has 20%-60% young groundwater. In addition to the freeform 373

histogram age distributions, the results of the four mathematical forms of age distributions are 374

also presented. For wells 59-05 and 72-22, all the models infer a very large fraction of water to 375

have an age of less than 20 years while for well 85-35 a more uniform distribution is estimated. 376

The results of 3, 4 and 10 bins are roughly consistent and to a large degree consistent with the 377

mathematical age distribution forms. The variation of the estimated bin contributions is larger 378

for 59-05. The combination of tracer concentrations of 59-05 cannot be well represented by any 379

of the age models, pointing to an internal inconsistency in the tracer data, given the 380

assumptions on the initial concentrations of the tracers in recharging groundwater underlying 381

all the models. This is reflected in relatively low values for Log (I) and high values for DIC, both 382

indicating poor model performance.383

The posterior distribution of the old fraction of groundwater is shown in Figure 5 for three of 384

the wells. The posterior old fraction is not significantly affected by the choice of the number of 385

bins. The only exception is for well 72-22 where the 10 bin model results in a much smaller old 386

fraction. This is due to the fact that in this well the fraction of old groundwater is small and for 387

the case of 10 bins the older fraction can be accounted for by the bin closest to the 60 years388

breakpoint. The same pattern is seen for well 85-35 but to a lesser degree. Figure 6 shows (for 389

well 72-22 as an example) histograms of the posterior distribution of tracer concentrations and390

observed concentrations (shown as a vertical line). The posterior distribution of 39Ar is lower 391

than the measured value for the 3 bin case and higher for the 10 bin case. In both cases, the 392

posterior distribution is much narrower than the analytical uncertainty of the 39Ar measurement393

(6-10 percent modern). The performance of 3, 4, and 10 bin models in reproducing the observed 394

tracer concentration of all the wells is summarized in Figure 7. Overall the observed 395

concentrations in all the cases are within the 95% equal-tails Credible Intervals (CIs)(Leray et al., 396

Accepted) of the posterior distributions. Although in most cases the 10 bin model results in a 397
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narrower confidence band for most of the tracers, no definitive conclusion can be made on what 398

number of bins results in an overall better reproduction of the observed tracers or the 399

uncertainty associated with it. In almost all the cases there is a trade-off between reproducing 400

some tracers with better confidence and some with a lesser when a different number of bins is 401

used.  402

Table 4 summarizes the measures of goodness of fit for all the wells and the seven presumed 403

age distributions. According to the DIC measure of goodness of fit, in most cases the log-normal 404

age distribution perform better than the other models, except for well 72-22 where the inverse 405

Gaussian model performs better. This indicates that when the level of complexity is taken into 406

account, mathematical forms can represent important features of the age distribution with a 407

smaller number of parameters. Among the histogram models, in the majority of the wells, the 4 408

bin histogram slightly outperforms both the 3 bin and 10 bin histograms. This means in most 409

cases, 4 bins contain enough complexity that can be determined using the number of tracers 410

used, in this case four. When the Bayes Factor is used to evaluate the performance of the 411

mathematical models, the histograms almost always outperform the mathematical forms. 412

Surprisingly, in most cases the three bin model outperforms a larger number of bins. 413

The MCMC approach also allows the evaluation of the internal correlations of the estimated 414

histogram bin contributions. As an example, scatter plots of accepted a posteriori bin 415

contributions are plotted for well 72-22 for the case when four bins are used (Figure 7). A high 416

correlation between two bins indicates that the method is unable to independently estimate 417

each bin value although it may estimate their sum with good confidence. For example a strong 418

correlation is apparent between bins 1 and 2 and to a smaller degree between bins 3 and 4. In 419

contrast, the correlations between non-adjacent bins and bins 2 and 3 are small. Note that the 420

range of estimated bin contributions over which the correlation is expressed is much larger for 421

bin 1 and bin 2. This is expressed in the cumulative age distribution as a wider range in the 422

estimated contribution of groundwater of 0-15 years, and a smaller range in the estimated 423

contributions of groundwater of 0-30 years (Fig. 4b). Both bin 3 and bin 4 contribute less than 424

0.03 to the total age distribution. This is expressed in the cumulative age distribution as a series 425
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of near-horizontal lines between 30 and 60 years. The other combinations of bins do not show a 426

correlation and the Bayesian Inference method is capable of independently estimating these 427

contributions based on the available tracers. When the negative correlation with a slope of 428

around one between two adjacent bins is present, the cumulative distribution may still be 429

expressed with a good confidence although individual bins may not. Correlations between 430

estimated parameters often indicate poorly chosen parameters. Internal correlations of 431

histogram bin estimates could guide the choice of bin-width such that these correlations are 432

minimal.433

2.4.3 La Selva434

Figure 8 shows the inferred 4 bin age distributions for the four wells considered at the La Selva 435

site. Although the uncertainty associated to the values in each bin is large, some insight can be 436

gained from the results regarding the likely general shape of the distribution.  For examle, in the 437

case of wells 7, 16 and 30, the Bayesian inference method is incapable of accurately estimating 438

the fraction of groundwater that is younger than 15 years (first age range bin). At the same time, 439

it is better able to estimate the fraction of water that is younger than 30 years (bin 1 and 2 440

combined). This is illustrated by the wide band of possible solutions in the age histogram at 15 441

years, and a narrower band of possible solutions in the cumulative age histogram at 30 years.442

This effect may indicate that the combination of tracers is not capable of discerning the water 443

from each of the bins.  For the case of well 11, the concentration of He and 14C is indicative of a 444

large fraction of groundwater older than 60 years. In this case the inferred age distribution of 445

young fraction (0-60 years old) seems to be close to uniform and the uncertainty regarding the 446

fractions in each bin is such that the method is practically incapable of providing any 447

meaningful information regarding the fractions in each bin. Figure 9 shows a comparison 448

between the observed tracer concentrations and their modeled posterior distribution obtained 449

using the 4 bin model for well 11. In the case of well 11 the model is doing a better job in 450

reproducing observed concentrations of CFC-11, CFC-12, 3H and 14C. The observed 451

concentration of most other tracers are within the 95% equal-tail credible intervals of the 452

posterior except for He and SF6. Figure 10 represent the posterior 95% CI brackets obtained 453



19

using 3, 4 and 10 bin histograms for the four wells considered for the La Selva data. The 3 and 4 454

bin models result in very similar outcomes. The posterior 95% CI brackets obtained using the 10 455

bin model are similar to the ones obtained using 3 and 4 bin models in most cases while in some 456

cases the brackets are narrower. The measures of goodness models Log (I), and DIC for 3, 4 and 457

10 bin models as well as three mathemarical forms are summerized in Table 5.  As it is expected, 458

the DIC measure tends to attribute a better model goodness index to the simpler models while 459

the Log (I) measure for the more complicated models are better. In general, the best 460

mathematical model outperforms the histogram forms based on both measures of goodness. 461

Among the histogram models 3 bin and 4 bin models alternatively are assigned better DICs 462

while 4 bin model does better according to Log (I) except for the case of well 11 where the 10 bin 463

model outperforms 3 and 4 bin models. When mathematical forms of age distribution are used, 464

the log normal model performs best in terms of DIC for wells 7, 16 and 30 while the simpler 465

exponential model is assigned a lower (better) DIC for the case of well 11.   466

467

2.4.4 Synthesis468

Because the same tracers were used in the synthetic case and for the Holten dataset, the Bayes 469

Factor and DIC values can be compared directly. All of the 3 bin histograms of the Holten case 470

have a higher DIC than the 3 bin histogram in the synthetic case, showing that the Holten age 471

distributions cannot be approximated by a 3 bin histogram as well as the synthetic case. The 472

three bin models result in comparable values for Bayes Factor for most wells and much better 473

results for some wells (e.g. 72-22, 85-33). In contrast, 4 bin histograms for all Holten wells 474

(except 85-33) have a lower DIC than the synthetic case, showing that the 4 bin histogram is 475

better capable of reproducing the tracers from the Holten wells than from the synthetic gamma 476

distribution. The opposite is the case when analyzing the differences between the Bayes Factor 477

for the Holten and synthetic case. All of the 10 bin histograms in Holten have smaller Bayes 478

Factors compared to the 10 bin results in the hypothetical case, while the comparison between 479

Holten and the synthetic case in terms of DIC yields mixed results.480
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Due to the difference between the number and nature of tracers used at two sites, no direct 481

comparison can be made between the performances of the inferred age distributions at each 482

site. Comparing figures 7 and 11 shows that reproducing the tracer concentrations has been 483

more successful for the Holten data. The uncertainties associated with age distribution are484

larger for the tracer data collected at La Selva site compared to the Holten site. This can be 485

attributed to the fact that for several of the tracers in La Selva, there are additional uncertainties 486

due to the environmental factors such as the adsorption of CFCs and 14C to the soil matrix, and 487

the decay rates of CFCs. 488

4. Discussion and conclusions489

Since it is not possible to estimate the exact groundwater age distribution from a limited 490

number of age tracer measurements, a mathematical form (e.g. exponential or inverse-Gaussian) 491

is often presumed. Either deterministic or stochastic approaches are then used to infer the 492

parameters defining it. Bayesian inference provides a powerful tool to assess the uncertainties 493

of such estimates and evaluate or compare the appropriateness of the presume age distributions 494

using measures such as DIC and Bayes factor. The DIC measure considers the complexity of the 495

models when assigning the measure while the Bayes Factor does not do that in an explicit way 496

although the model complexity is factored in implicitly. When these measures have been used 497

in the past to determine the best mathematical form representing an age distribution for a single 498

site, no definitive conclusion has been made on the best form of the age distribution function 499

describing the combination of tracer concentration in all of the wells. This is due to the fact that 500

each well may be extracting groundwater from different sources, following different travel 501

paths and undergoing different mixing than the other wells, and also due to the effect of local 502

heterogeneities at the proximity of the wells on the age distribution at each well. It is therefore 503

desirable to allow the inference technique to be able to assign the most appropriate form of the 504

age distribution, rather than it to be pre-determined. In this study we examined a Markov Chain 505

Monte Carlo method to infer the groundwater age distribution from tracer data using a free-506

form (histogram) age distribution.507
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The method was first applied to a hypothetical case where the tracer concentrations are 508

obtained based on a known gamma age distribution. The combination of 85Kr, 3H, 3He and 39Ar 509

was sufficient to reproduce the shape of the mathematical age distribution with a 3 bin or 4 bin510

age histogram. A 10 bin age histogram showed larger deviations from the original cumulative 511

distribution between 30 and 50 years, as a result of deviations of the estimated fraction of 10-25 512

years. Clearly, the 10 bin age histogram was not sufficiently constrained by the four age tracers.513

Based on quantitative measures of discrepancy between inferred and true age distribution, the 4 514

bin model provides the closest approximation. While the 10 bin histogram is better capable of 515

reproducing the tracer data, it does not reproduce the true age distribution as well as 3 and 4 516

bin models. This is an indication that the 10 bin model is over-parameterized and the inferred 517

age distributions are non-unique.   518

The method was also applied to the tracer data collected from seven wells at the Holten site in 519

Netherlands where four tracers (85Kr, 3H, 3He, and 39Ar) were used, and the La Selva site in 520

Costa Rica where seven tracers including three CFCs, SF6, 14C, He and 3H were used. For each 521

sample, two measures of model effectiveness (DIC and Bayes factor) were used to compare the 522

performance of 3, 4 and 10 bin histogram age distributions as well as mathematical age 523

distributions (exponential, gamma, inverse-Gaussian and log-normal). For most wells at both 524

sites, the log-normal age distribution performed better than the rest of the mathematical 525

distributions as well as the histogram forms. Among the histogram forms, in most cases the four 526

bin and in some cases three bin models performed best when the model complexity was taken 527

into consideration using the DIC measure. It seems that the 10 bin histogram is over-528

parameterized and the three bin histogram is not adequate for describing the observed tracer 529

concentrations in most cases. When the logarithm of Bayes Factors are used for evaluating the 530

models, models with higher complexity (i.e. 10 bin models) are given the preference since 531

complexity is not explicitly considered 532

Ideally, a multitude of age models is investigated to convert the measured tracer concentrations 533

to a groundwater age distribution. An ensemble of parallel models will represent the model 534
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error – no model is capable of capturing the actual age distribution – rather than merely the 535

parameterization error associated with a single model. 536

The age histogram approach provides flexibility to model any shape of age distribution, within 537

the limitations of assigning a uniform distribution within each bin. Due to simplicity of the 538

model, more parameters are required to closely mimic a typical groundwater age distribution, 539

such as the exponential model while the number of parameters (histogram bins) that can be 540

confidently estimated is limited by the number of measurements of distinctly different 541

groundwater age tracer that are available. Age distributions represented by larger number of 542

bins can become preferred if a larger number of tracers or water samples taken at different 543

times are available. The observation that the mathematical forms generally perform better than 544

the histogram form can be attributed to the fact that they can capture smooth features of the 545

true groundwater age distribution more effectively using a smaller number of parameters.546

However, this does not undermine the value of the freeform histograms since they free us from 547

testing a number of conceivable mathematical forms to find the best ones. Age histograms also 548

do not infer the shape of the pre-modern groundwater age distribution for which often no 549

tracers are available, unlike some of the mathematical models that infer an old-tail into infinity 550

(e.g. the exponential model).551

Age histograms are also potentially capable of inferring the shape of groundwater age when it 552

does not conform to any conventional mathematical distribution. A larger amount of tracer data 553

can support more complex models and the flexibility of the histogram approach has been 554

demonstrated to be able to reconstruct a highly detailed age distribution based on electrical 555

conductivity time series (Cirpka et al., 2007; Liao and Cirpka, 2011).   556

The uncertainties affecting inference of age distribution can be classified into three categories: 557

The first category is observation and measurement error which stems from the uncertainty in the 558

analytical methods as well as the uncertainty due to local and temporal heterogeneities in the 559

concentration of tracers. The second category of uncertainty is referred to as external forcing560

uncertainty. This includes 1) assumptions about the historical (decay corrected) concentrations 561

of tracers in precipitation or the atmosphere, 2) transport of the tracers through the unsaturated 562
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zone, leading to delay and dispersion of the signal, 3) non-conservative transport of tracers, 563

caused by sorption, degradation or diffusive exchange. The third category of uncertainty is the 564

model structural error which is due to the fact that any presumed form of age distribution is at 565

best an approximation of the real form. In complicated systems with large heterogeneities, at 566

the proximity of the sampling point the true form of age distribution has been shown to be 567

more complex than any of the commonly used mathematical forms (Weissmann et al., 2002).568

Measurement and analytical uncertainty is often the best constrained source of uncertainty. 569

Some aspects of the second category of uncertainty may be investigated separately. Availability 570

of local or nearby sampling stations of atmospheric tracer mixing ratios (Busenberg and 571

Plummer, 2000) or concentrations in precipitation (Kralik et al., 2003) reduces the uncertainty in 572

the tracer input function. Incorporating the uncertainty of the tracer input functions is 573

challenging because these are time series rather than scalar numbers. In the simplest case, the 574

reconstructed input function is biased. However, local contamination of atmospheric mixing 575

ratios due to nearby industrial activities (Ho and Schlosser, 2000) can be variable in time, 576

affecting only a portion of the tracer history. Although in this work, this source of uncertainty is 577

ignored, developing methods to include this in the analysis is critical.578

Sampling tracer concentrations in the unsaturated zone (Foster and Smith-Carington, 1980) or in 579

short screened monitoring wells with an assumed narrow age distribution (Visser et al., 2013)580

can reduce the uncertainty in the dispersion and lag of tracers in the unsaturated zone (Cook581

and Bohlke, 2000; Corcho Alvarado et al., 2007). A combination of age tracers from such 582

sampling points can demonstrate the non-conservative behavior of some of the tracers (e.g. 583

Bauer et al., 2001). Incorporating the uncertainty of the non-conservative transport behavior in 584

the unsaturated zone and subsurface is also challenging (Visser et al. 2009; 2013). Because of 585

variations in mean water tables and the heterogeneity of subsurface properties in the capture 586

area, effective parameters representing the entire aquifer need to be applied to describe such 587

processes.588

Without such supplementary information, separating the first and second category from the 589

model structural error is a challenging task. In most stochastic inverse methods applied to 590
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parameter estimation of hydrogeological models they are lumped together. Separating these 591

sources of uncertainty can be of enormous value since it provides a way to assess the value of 592

information content of the tracer data and also a more direct way to evaluate various model 593

structures. 594
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Tables797

798

Table 1: Tracer concentrations for the samples from seven wells at the Holten site.799

ID top bottom 85Kr +/- 3H +/- 3Hetrit +/- 39Ar +/-
m below 
surface

dpm/ccKr TU TU eq. % modern

59-05 19 30 38 1.2 6.48 0.14 21.1 100 10

67-19 14 23 39.7 1.5 6.09 0.15 6.4 0.5 104 8

72-22 15 34 35.9 1.3 6.75 0.16 14.0 0.5 93 6

73-29 16 31 39.4 1.6 6.38 0.16 8.7 0.5 100 10

85-33 46 68 2.7 0.2 1.23 0.05 9.2 0.5 51 8

85-34 48 74 8.4 0.5 3.98 0.11 21.1 0.5 77 7

85-35 45 75 8.7 0.3 3.82 0.11 20.4 0.5 74 6

800

801

802
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Table 2: Observed tracer concentrations and the prior information of transport parameters used in La Selva analysis. 

SF6 CFC-11 CFC-12 CFC-113 3H 14C 13C 4He 

(fmol/L) (pmol/kg) (pmol/kg) (pmol/kg) (TU) (pmC) (cm3 STP/g)

Well 7 1.1 3.02 1.66 0.257 0.61 117.1 -26.00 4.81 x 10-8

Well 11 0.169 0.446 0.138 0.0172 0.36 21.7 -7.85 2.50 x 10-7

Well 16 0.931 3.02 1.62 0.243 0.72 116.9 -24.34 5.06 x 10-8

Well 30 1.18 3.13 1.45 0.187 0.66 83.4 -20.20 7.41 x 10-8

KOC (g/g-1) 195 97 356 316 0

Log KOW 0.226 2.53 2.16 3.16 0

decay rate (yr-1) 5.6x10-2 1.2x10-4 2.77x10-10

Prior co 70 4.5x10-7

Biogenic 13C -25

Rock 13C -2.4
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Table 3: Measured of goodness of fit for the hypothetical gamma age distribution represented 

using 3, 4, and 10 bin histograms. Log (I) and DIC reflect the ability of the model to reproduce 

the synthetic tracer concentations,  and b are the spread and bias of the histograms around 

the actual hypothetical gamma age distribution.

Log(I) DIC  b

3 bins 21.37 174 0.0514 0.0380

4 bins 25.83 198 0.0259 0.0252

10 bins 26.67 209 0.0884 0.0786
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Table 4: Measures of goodness of fit Log (I) and DIC for different age distributions used to describe the tracer concentrations in the seven 
wells at the Holten site.

well 59-05 well 67-19 well 72-22 well 73-29 well 85-33 well 85-34 well 85-35

Log (I) DIC Log (I) DIC Log (I) DIC Log (I) DIC Log (I) DIC Log (I) DIC Log (I) DIC

3 bins 21.25 183.60 21.71 189.79 25.79 430.03 22.66 201.84 24.25 737.15 20.02 180.59 20.43 209.11

4 bins 21.09 179.62 20.09 152.31 24.84 196.01 20.76 180.38 24.80 429.38 21.03 186.66 21.46 190.35

10 bins 21.10 182.46 21.42 183.40 25.27 213.82 23.82 204.42 24.57 395.623 22.55 183.51 24.44 302.80

Exponential 20.83 253.78 20.10 236.09 21.28 404.12 20.60 226.72 22.90 804.62 19.28 146.22 19.68 148.69

Log-normal 19.88 131.80 20.34 123.46 25.16 189.72 22.01 127.00 22.82 219.98 18.78 124.41 19.22 128.45

Gamma 19.21 114.58 21.96 145.1 21.52 119.27 21.67 131.49 18.31 122.55 19.82 146.95 19.41 130.87

Inv Gaussian 20.53 135.01 22.88 165.13 26.36 179.49 22.91 141.81 22.47 244.89 19.81 131.95 20.21 153.15
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Table 5: Measures of goodness of fit Log (I) and DIC for 3, 4 and 10 bin age histograms as well as 
three mathematical models for four wells at the La Selva site. 

well 7 well 11 well 16 well 30

Log (I) DIC Log (I) DIC Log (I) DIC Log (I) DIC

3 bins 68.47 629.68 71.43 684.82 71.14 650.95 70.79 651.66

4 bins 68.70 630.84 71.52 675.56 71.44 652.33 71.12 651.07

10 bins 68.22 641.67 71.58 727.08 70.43 655.96 70.57 661.94

Exponential 69.42 617.56 71.63 653.85 71.92 637.81 71.83 638.48

Log-normal 68.52 590.63 71.88 680.51 72.21 612.23 71.12 618.26

Gamma 69.95 594.89 70.89 655.60 72.77 618.46 72.22 617.98
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Figures: 

Figure 1: Input functions of common groundwater age tracers on a logarithmic time scale. Tracer concentrations are averaged over 
exponentially increasing age bins, and then scaled to the maximum historical concentration. Tracer concentrations obtained from (Hua 
and Barbetti, 2004 (14C); IAEA/WMO, 2010 (3H); Maiss and Brenninkmeijer, 1998 (SF6); Plummer and Busenberg, 2006 (CFCs); 
Walker et al., 2000 (CFCs))and Institute of Atmospheric Research (IAR), Freiburg, Germany (85Kr)
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Figure 2: Hypothetical Gamma distribution with parameters � = � and � = � and 60 samples from the posterior inferred distributions 
using b) 3 bins, c) 4 bins and d) 10 bins histograms and a) all three overlaid. 
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a) well 59-05 b) well 72-22 c) well 85-35

Figure 3: Inferred exponential, lognormal, gamma age distributions as well as 3, 4, and 10 bin histograms for tracer data at wells 59-05, 
72-22 and 85-35 at the Holten site. 



37

a) well 59-05 b) well 72-22 c) well 85-35

Figure 4: Posterior distribution of old fraction of groundwater for a) well 59-05, b) well 72-22 and c) well 85-33 at the Holten site. 
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a) well 72-22, 3 bin b) well 72-22, 4 bin c) well 72-22, 10 bin

Figure 5: Observed concentrations (blue) and posterior distribution of concentrations (red_ of the four tracers used in the Holten site 
analysis based on a 3 bin (a), 4 bin (b) and 10 bin (c) age distribution, for well 72-22 as an example.  
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Figure 6: The 95% Credible intervals (CI) for the posterior concentrations of tracers using 3, 4 and 10 bin histogram models for six wells 
at the Holten site. 

a) well 59-05 b) well 67-19 c) well 72-22

d) well 85-33 e) well 85-34 f) well 85-35
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Figure 7: Scatter plots showing the correlations between the inferred fractions of water in each age bin for the 4 bin histogram model 
applied to well 72-22 at the Holten Site. 
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a) Well 7 b) Well 11

c) Well 16 d) Well 30

Figure 8: Samples of inferred 4 bin age distributions for a) wells 7, b) well 11, c) well 16 and d) well 30 at the La Selva site  
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Figure 9: Observed concentration (blue) and posterior distribution of concentrations (red) of the 

eight tracers used for well 11 based on a 4 bin age distribution. 
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a) La Selva Well 7 b) La Selva Well 11

c) La Selva Well 16 d) La Selva Well 30

Figure 10: Observed and posterior 95% Credibility Interval (CI) brackets of tracer concentrations 
for four wells in the La Selva site inferred based on 3, 4 and 10 bin histogram models. 


